Spatial deformation models for non-rigid image registration
نویسندگان
چکیده
Spatial deformation models are used to regularize image registration such that they prevent physically and anatomically unlikely transformations. It is often assumed that optimal models are obtained by modeling deformation properties of real tissues. However, this is not exactly true, because external forces, which drive the registration, in general differ from forces which in reality deformed the anatomy. In order to develop better spatial deformation models, it is necessary to consider these differences. In this work we focus on convolution based models. We analyze advantages and disadvantages of two most commonly used spatial deformation models, i.e. elastic model, and incremental model, and two widely used convolution kernels: an elastic kernel and a Gaussian kernel. The result of this work is a new combined elastic-incremental model, suitable for non-rigid registration of medical images.
منابع مشابه
بهبود سرعت "انطباق مبتنی بر روش برش گراف" جهت انطباق غیر صلب تصاویر تشدید مغناطیسی مغز
Image processing methods, which can visualize objects inside the human body, are of special interests. In clinical diagnosis using medical images, integration of useful data from separate images is often desired. The images have to be geometrically aligned for better observation. The procedure of mapping points from the reference image to corresponding points in the floating image is called Ima...
متن کاملCompensation of brain shift during surgery using non-rigid registration of MR and ultrasound images
Background: Surgery and accurate removal of the brain tumor in the operating room and after opening the scalp is one of the major challenges for neurosurgeons due to the removal of skull pressure and displacement and deformation of the brain tissue. This displacement of the brain changes the location of the tumor relative to the MR image taken preoperatively. Methods: This study, which is done...
متن کاملA Robust and Accurate Non-rigid Medical Image Registration Algorithm Based on Multi-level Deformable Model
Background Compared to the rigid image registration task, the non-rigid image registration task faces much more challenges due to its high degree of freedom and inherent requirement of smoothness in the deformation field. The purpose was to propose an efficient coarse-to-fine non-rigid medical image registration algorithm based on a multilevel deformable model. Methods In this paper, a robust...
متن کاملNon-rigid Image Registration Using Gaussian Mixture Models
Non-rigid mutual information (MI) based image registration is prone to converge to local optima due to Parzen or histogram based density estimation used in conjunction with estimation of a high dimensional deformation field. We describe an approach for non-rigid registration that uses the log-likelihood of the target image given the deformed template as a similarity metric, wherein the distribu...
متن کاملGroupwise and Local Analysis of Image Warps
Most non-rigid image registration algorithms are based on aligning pairs of images, but there has been recent interest in groupwise algorithms, which enable the registration of a set of images into a single common frame of reference. The set of deformation fields obtained from such a registration contains information about the variability of structures across the group, meaning that the quantit...
متن کامل